Epimerisation and Alkylation of a β -Thiolactone

By STEPHEN D. CARTER and RICHARD J. STOODLEY*

(Department of Organic Chemistry, The University, Newcastle upon Tyne NE1 7RU)

Summary Derivative (3) undergoes epimerisation at position 3 of its β -thiolactone ring when treated with triethylamine; alkylation occurs at the same site in the presence of a strong base and an alkylating agent.

In connection with work aimed at the derivation of analogues of the β -lactam antibiotics, we wished to effect the alkylation of oxazoline-azetidinones of type (1) at position 2 of the butanoate group. Not surprisingly, when treated with NaH and MeI in tetrahydrofuran (THF), the methylthiobutanoate (1; $R^2 = R^3 = Me)^1$ was cleanly converted into the but-2-enoate (2).¹ We now report a solution to this problem which is likely to be of general value.

The hydrogen atom of the β -thiolactone ring in (3) is expected to be quite acidic. Moreover, the tendency towards β -elimination is likely to be markedly reduced in this derivative since the derived carbanion (4) possesses a near-orthogonal arrangement of the anionic centre and the C-S bond. Consequently, (3) appeared to be a promising candidate for effecting the desired alkylation. Surprisingly, although it is established that thiol esters and y-thiolactones² undergo alkylation adjacent to the carbonyl group, the corresponding reaction of β -thiolactones does not appear to have been reported.

chloroformate.3 When treated with this reagent in pyridine, the mercury(II) salt (1; $R^2R^3 = Hg)^4$ afforded (42%) after recrystallisation) the desired compound (3), † m.p. 129—131 °C, $[\alpha]_{\rm D}$ -26° (CHCl₃).

The acidic nature of its β -thiolactone ring hydrogen atom was readily demonstrated by treating the derivative (3) with a drop of Et_3N in $CDCl_3$. A 1.5:1 mixture of the starting material and the epimer (5) [the derivatives were readily distinguished by the chemical shift of the β -thiolactone ring proton; that of the starting material appeared at δ 5.23 and that of the epimer (5) at δ 4.90] was rapidly formed. A similar mixture resulted when the pure epimer (5), † m.p. 158—162 °C, $[\alpha]_{D}$ + 121° (CHCl₃), was treated under corresponding conditions, establishing that the reaction was at equilibrium.

When treated with NaH and MeI in THF at 0 °C, the compound (3) afforded a *ca.* 1:1 mixture of the methyl derivatives (6; $R^2 = Me$). The mixture was separated by silica gel chromatography to give the more mobile epimert (30%), m.p. 113—115 °C, $[\alpha]_D - 60^\circ$ (CHCl₃), and the less mobile epimer[†] (44%), m.p. 131–132 °C, $[\alpha]_{D}$ +178° $(CHCl_3)$.

With potassium t-butoxide and t-butyl bromoacetate in NN-dimethylformamide at -20 °C, the compounds (3) or (5) afforded a ca. 6:1 mixture of the derivatives (6; $R^2 =$ CH₂·CO₂Bu^t). The major more mobile epimer, † m.p. 125-126 °C, $[\alpha]_D$ - 60° (CHCl₃), was isolated [40% from (3) and 46% from (5)] after silica gel chromatography.

 β -Thiolactones are known to react readily with nucleophilic reagents, always with cleavage of the S-CO bond. There are also reports of the derivatives undergoing desulphurisation with Raney nickel and thermal cycloreversion to alkenes and carbonyl sulphide.³ In principle, the alkylation of β -thiolactones considerably increases their utility in synthesis, enabling the derivatives to be regarded as potential equivalents of the carbanions (7)-(9).

We thank Beecham Pharmaceuticals for financial support.

It is well known that β -mercapto-carboxylic acid salts are converted into β -thiolactones by reaction with ethyl

(Received, 15th November 1976; Com. 1254.)

† The composition of new compounds was confirmed by elemental analysis and/or by mass spectroscopy. Structural assignments are based upon i.r. and n.m.r. spectroscopic evidence.

- ¹ R. J. Stoodley and N. S. Watson, *J.C.S. Perkin I*, 1975, 883. ² J. Wemple, *Tetrahedron Letters*, 1975, 3255; R. A. Gorski, G. J. Wolber, and J. Wemple, *ibid.*, 1976, 2577.
- ³ M. G. Lin'kova, N. D. Kuleshova, and I. L. Knunyants, Russian Chem. Rev., 1964, 493.
- ⁴ R. J. Stoodley and N. R. Whitehouse, J.C.S. Perkin I, 1974, 181.